LV8729V

Bi-CMOS LSI

PWM Constant-Current Control Stepping Motor Driver

Overview

The LV8729V is a PWM current-controlled micro step bipolar stepping motor driver.
This driver can do eight ways of micro step resolution of $1 / 128$ step from Full step, and can drive simply by the CLK input.

Features

- Single-channel PWM current control stepping motor driver.
- BiCDMOS process IC.
- Output on-resistance (upper side : 0.35Ω; lower side : 0.3Ω; total of upper and lower : $0.65 \Omega ; \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{O}}=1.8 \mathrm{~A}$)
- Full, Half, Quarter, $1 / 8,1 / 16,1 / 32,1 / 64,1 / 128$ Step are selectable.
- Advance the excitation step with the only step signal input.
- Available forward reverse control.
- Over current protection circuit.
- Thermal shutdown circuit.
- Input pull down resistance.
- With reset pin and enable pin.

Typical Applications

- Security camera
- Projector
- Stage Lighting
- Industrial Printer

Pin Assignment

Package Dimensions

unit : mm (typ)
3333

Mounting Pad Sketch

Caution: The package dimension is a reference value, which is not a guaranteed value.

Block Diagram

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VM max		36	V
Maximum output peak current	IO max		1.8	A
Maximum logic input voltage	VIN max		6	V
Maximum VREF input voltage	VREF max		6	V
Maximum MO input voltage	VMO max		6	V
Maximum DOWN input voltage	VDOWN max		6	V
Allowable power dissipation	Pd max	${ }^{*}$	3.85	W
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified circuit board : $90.0 \mathrm{~mm} \times 90.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy 2-layer board, with backside mounting.

Allowable Operating Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9 to 32	V
Logic input voltage	VIN		0 to 5	V
VREF input voltage range	VREF		0 to 3	V

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=24 \mathrm{~V}, \mathrm{VREF}=1.5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Standby mode current drain	$\mathrm{I}_{\mathrm{Mst}}$	ST = "L"		70	100	$\mu \mathrm{A}$
Current drain	IM	ST = "H", OE = "H", no load		3.3	4.6	mA
Thermal shutdown temperature	TSD	Design guarantee	150	180	200	${ }^{\circ} \mathrm{C}$
Thermal hysteresis width	$\Delta T S D$	Design guarantee		40		${ }^{\circ} \mathrm{C}$
Logic pin input current	$\mathrm{I}_{1} \mathrm{NL}$	$\mathrm{V}_{1} \mathrm{~N}=0.8 \mathrm{~V}$	3	8	15	$\mu \mathrm{A}$
	$\mathrm{linH}^{\text {l }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	30	50	70	$\mu \mathrm{A}$
Logic high-level input voltage	$\mathrm{V}_{\text {IN }} \mathrm{H}$		2.0			V
Logic low-level input voltage	$\mathrm{V}_{\text {IN }}$				0.8	V
Chopping frequency	Fch	Cosc1 $=100 \mathrm{pF}$	70	100	130	kHz
OSC1 pin charge/discharge current	losc1		7	10	13	$\mu \mathrm{A}$
Chopping oscillation circuit threshold voltage	Vtup1		0.8	1	1.2	V
	Vtdown1		0.3	0.5	0.7	V
VREF pin input voltage	Iref	$\mathrm{VREF}=1.5 \mathrm{~V}$	-0.5			$\mu \mathrm{A}$
DOWN output residual voltage	$\begin{aligned} & \text { VO1DO } \\ & \text { WN } \end{aligned}$	Idown $=1 \mathrm{~mA}$		40	100	mV
MO pin residual voltage	Vo1MO	Imo $=1 \mathrm{~mA}$		40	100	mV
Hold current switching frequency	Fdown	Cosc2 $=1500 \mathrm{pF}$	1.12	1.6	2.08	Hz
Hold current switching frequency threshold voltage	Vtup2		0.8	1	1.2	V
	Vtdown2		0.3	0.5	0.7	V
VREG1 output voltage	Vreg1		4.7	5	5.3	V
VREG2 output voltage	Vreg2	$\mathrm{V}_{\mathrm{M}}=24 \mathrm{~V}$	18	19	20	V
Output on-resistance	Ronu	$\mathrm{I} \mathrm{O}=1.8 \mathrm{~A}$, high-side ON resistance		0.35	0.455	Ω
	Rond	$\mathrm{I} \mathrm{O}=1.8 \mathrm{~A}$, low-side ON resistance		0.3	0.39	Ω
Output leakage current	Ioleak	$\mathrm{V}_{\mathrm{M}}=36 \mathrm{~V}$			50	$\mu \mathrm{A}$
Diode forward voltage	VD	I D $=-1.8 \mathrm{~A}$		1	1.4	V
Current setting reference voltage	VRF	VREF $=1.5 \mathrm{~V}$, Current ratio 100%	0.285	0.3	0.315	V

Figure1 Standby Mode Current Drain vs VM Voltage

Figure5 VREG1 Output Voltage vs VM Voltage

Figure2 Current Drain vs VM Voltage

Figure4 VREF Pin Input Current vs VREF Voltage (VM=24V)

Figure6 VREG2 Output Voltage vs VM Voltage

Figure7 Output on Resistance vs Output Current (VM=24V)

Figure9 Diode Foward Voltage vs Diode Current

Figure8 Output on Resistance vs Temperature (VM=24V)

Figure10 Output Leakage Current vs VM Voltage

Pin Functions

Pin No.	Pin Name	Pin Function	Equivalent Circuit
$\begin{gathered} \hline 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 13 \\ 14 \end{gathered}$	MD1 MD2 MD3 OE RST FR STP	Excitation mode switching pin Excitation mode switching pin Excitation mode switching pin Output enable signal input pin Reset signal input pin Forward / Reverse signal input pin Step clock pulse signal input pin	
6	ST	Chip enable pin.	
$\begin{array}{\|c} \hline 23,24 \\ 25 \\ 28,29 \\ 30,31 \\ \\ 32,33 \\ 34,35 \\ 36,37 \\ 38,39 \\ 42 \\ 43,44 \end{array}$	OUT2B PGND2 $V_{M}{ }^{2}$ RF2 OUT2A OUT1B RF1 $V_{M} 1$ PGND1 OUT1A	Channel 2 OUTB output pin. Channel 2 Power system ground Channel 2 motor power supply connection pin. Channel 2 current-sense resistor connection pin. Channel 2 OUTA output pin. Channel 1 OUTB output pin. Channel 1 current-sense resistor connection pin. Channel 1 motor power supply pin. Channel 1 Power system ground Channel 1 OUTA output pin.	
21	VREF	Constant-current control reference voltage input pin.	

Continued on next page.

LV8729V
Continued from preceding page.

Pin No.	Pin Name	Pin Function	Equivalent Circuit
3	VREG2	Internal regulator capacitor connection pin.	
5	VREG1	Internal regulator capacitor connection pin.	
$\begin{aligned} & \hline 18 \\ & 19 \\ & 20 \end{aligned}$	EMO DOWN MO	Over-current detection alarm output pin. Holding current output pin. Position detecting monitor pin.	
15 16	$\begin{aligned} & \hline \text { OSC1 } \\ & \text { OSC2 } \end{aligned}$	Copping frequency setting capacitor connection pin. Holding current detection time setting capacitor connection pin.	

Reference describing operation

(1) Stand-by function

When ST pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF. When ST pin is at high levels, the stand-by mode is released.
(2) STEP pin function

STEP input advances electrical angle at every rising edge (advances step by step).

Input		Operating mode
ST	STP	
Low	${ }^{*}$	Standby mode
High		Excitation step proceeds
High		

STEP input MIN pulse width (common in H/L): 500ns (MAX input frequency: 1 MHz)
However, constant current control is performed by PWM during chopping period, which is set by the capacitor connected between OSC1 and GND. You need to perform chopping more than once per step. For this reason, for the actual STEP frequency, you need to take chopping frequency and chopping count into consideration.
For example, if chopping frequency is $50 \mathrm{kHz}(20 \mu \mathrm{~s})$ and chopping is performed twice per step, the maximum STEP frequency is obtained as follows: $f=1 /(20 \mu s \times 2)=25 \mathrm{kHz}$.
(3) Input timing

Figure 11. Input timing chart
TstepH/TstepL : Clock H/L pulse width (min 500ns)
Tds: Data set-up time (min 500ns)
Tdh : Data hold time (min 500ns)
(4) Excitation setting method

Set the micro step resolution setting as shown in the following table by setting MD1 pin, MD2 pin and MD3 pin.

Input			Micro step resolution	Excitation mode	Initial position	
	MD3	MD2				
Low	Low	Low	Full Step	2-phase	100%	-100%
Low	Low	High	Half Step	$1-2$ phase	100%	0%
Low	High	Low	Quarter Step	W1-2 phase	100%	0%
Low	High	High	$1 / 8$ Step	2W1-2 phase	100%	0%
High	Low	Low	$1 / 16$ Step	4W1-2 phase	100%	0%
High	Low	High	$1 / 32$ Step	8W1-2 phase	100%	0%
High	High	Low	$1 / 64$ Step	16W1-2 phase	100%	0%
High	High	High	$1 / 128$ Step	32W1-2 phase	100%	0%

The initial position is also the default state at start-up and excitation position at counter-reset in each Micro step resolution.

LV8729V

(5) Position detection monitoring function

The MO position detection monitoring pin is of an open drain type.
When the excitation position is in the initial position, the MO output is placed in the ON state.
(Refer to "Examples of current waveforms in each of the excitation modes.")
(6) Output current setting

Output current is set shown below by the VREF pin (applied voltage) and a resistance value between RF1(2) pin and GND.

IOUT = (VREF / 5) / RF1 (2) resistance

* The setting value above is a 100% output current in each micro step resolution.
(Example) When VREF $=1.1 \mathrm{~V}$ and RF 1 (2) resistance is 0.22Ω, the setting is shown below.

$$
\text { IOUT }=(1.1 \mathrm{~V} / 5) / 0.22 \Omega=1.0 \mathrm{~A}
$$

If VREF is open or the setting is out of the recommendation operating range, output current will increase and you cannot set constant current under normal condition. Hence, make sure that VREF is set in accordance with the specification.
However, if current control is not performed (if the IC is used without saturation drive or current limit) make sure that the setting is as follows: $\mathrm{VREF}=5 \mathrm{~V}$ or $\mathrm{VREF}=\mathrm{VREG} 1$
(7) Output enable function

When the OE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the STP is input. Therefore, when OE pin is returned to High, the output level conforms to the excitation position proceeded by the STP input.

OE	Operating mode
High	Output ON
Low	Output OFF

Figure 12. Output enable function timing chart
(8) Reset function

When the RST pin is set Low, the output goes to initial mode and excitation position is fixed in the initial position for STP pin and FR pin input. MO pin outputs at low levels at the initial position. (Open drain connection)

RST	Operating mode
High	Normal operation
Low	Reset state

Figure 13. Reset function timing chart
(9) Forward / reverse switching function

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

Figure 14.Forward/Reverse switching function timing chart
The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the STP pin. In addition, CW and CCW mode are switched by FR pin setting.
In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.
In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.
(10) EMO, DOWN output pin

The output pin is open -drain connection. When it becomes prescribed, it turns on, and each pin outputs the Low level.

Pin state	EMO	DOWN
Low	At detection of over-current	Holding current state
OFF	Normal state	Normal state

(11) Chopping frequency setting function

Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND.

$$
\mathrm{Fcp}=1 /\left(\operatorname{Cosc} 1 / 10 \times 10^{-6}\right)(\mathrm{Hz})
$$

(Example) When Cosc1 $=180 \mathrm{pF}$, the chopping frequency is shown below.
Fcp $=1 /\left(180 \times 10^{-12} / 10 \times 10^{-6}\right)=55.5(\mathrm{kHz})$
The higher the chopping frequency is, the greater the output switching loss becomes. As a result, heat generation issue arises.
The lower the chopping frequency is, the lesser the heat generation becomes. However, current ripple occurs.
Since noise increases when switching of chopping takes place, you need to adjust frequency with the influence to the other devices into consideration. The frequency range should be between 40 kHz and 125 kHz .
(12) Open-drain pin for switching holding current

The output pin is an open-drain connection.
This pin is turned ON when no rising edge of STP between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.
The open-drain output in once turned ON, is turned OFF at the next rising edge of STP.
Holding current switching time (Tdown) is set as shown below by a capacitor between OSC2 pin and GND.

$$
\text { Tdown }=\operatorname{Cosc} 2 \times 0.4 \times 10^{9}
$$

(Example) When Cosc2 $=1500 \mathrm{pF}$, the holding current switching time is shown below.

$$
\text { Tdown }=1500 \mathrm{pF} \times 0.4 \times 10^{9}=0.6(\mathrm{~s})
$$

(13) Output current vector locus (one step is normalized to 90 degrees)

Figure 15.Output current vector

Current setting ratio in each micro step resolution

STEP	$\begin{gathered} 1 / 128 \\ (\%) \end{gathered}$		$\begin{aligned} & 1 / 64 \\ & (\%) \end{aligned}$		$\begin{aligned} & 1 / 32 \\ & (\%) \end{aligned}$		$\begin{aligned} & 1 / 16 \\ & (\%) \end{aligned}$		$\begin{aligned} & 1 / 8 \\ & (\%) \end{aligned}$		Quarter (\%)		Half (\%)		Full (\%)	
	1ch	2ch														
$\theta 0$	100	0	100	0	100	0	100	0	100	0	100	0	100	0		
$\theta 1$	100	1														
$\theta 2$	100	2	100	2												
$\theta 3$	100	4														
$\theta 4$	100	5	100	5	100	5										
$\theta 5$	100	6														
$\theta 6$	100	7	100	7												
$\theta 7$	100	9														
$\theta 8$	100	10	100	10	100	10	100	10								
$\theta 9$	99	11														
$\theta 10$	99	12	99	12												
$\theta 11$	99	13														
$\theta 12$	99	15	99	15	99	15										
$\theta 13$	99	16														
$\theta 14$	99	17	99	17												
$\theta 15$	98	18														
$\theta 16$	98	20	98	20	98	20	98	20	98	20						
$\theta 17$	98	21														
$\theta 18$	98	22	98	22												
$\theta 19$	97	23														
$\theta 20$	97	24	97	24	97	24										
$\theta 21$	97	25														
$\theta 22$	96	27	96	27												
$\theta 23$	96	28														
$\theta 24$	96	29	96	29	96	29	96	29								
$\theta 25$	95	30														

Continued from preceding page.

STEP	$\begin{gathered} 1 / 128 \\ (\%) \\ \hline \end{gathered}$		$\begin{gathered} 1 / 64 \\ (\%) \\ \hline \end{gathered}$		$\begin{aligned} & 1 / 32 \\ & (\%) \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 16 \\ & (\%) \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 8 \\ & (\%) \\ & \hline \end{aligned}$		Quarter (\%)		Half (\%)		Full (\%)	
	1ch	2ch														
$\theta 26$	95	31	95	31												
$\theta 27$	95	33														
$\theta 28$	94	34	94	34	94	34										
$\theta 29$	94	35														
$\theta 30$	93	36	93	36												
$\theta 31$	93	37														
$\theta 32$	92	38	92	38	92	38	92	38	92	38	92	38				
$\theta 33$	92	39														
$\theta 34$	91	41	91	41												
$\theta 35$	91	42														
$\theta 36$	90	43	90	43	90	43										
$\theta 37$	90	44														
$\theta 38$	89	45	89	45												
$\theta 39$	89	46														
$\theta 40$	88	47	88	47	88	47	88	47								
$\theta 41$	88	48														
$\theta 42$	87	49	87	49												
$\theta 43$	86	50														
$\theta 44$	86	51	86	51	86	51										
$\theta 45$	85	52														
$\theta 46$	84	53	84	53												
$\theta 47$	84	55														
$\theta 48$	83	56	83	56	83	56	83	56	83	56						
$\theta 49$	82	57														
$\theta 50$	82	58	82	58												
$\theta 51$	81	59														
$\theta 52$	80	60	80	60	80	60										
$\theta 53$	80	61														
$\theta 54$	79	62	79	62												
$\theta 55$	78	62														
$\theta 56$	77	63	77	63	77	63	77	63								
$\theta 57$	77	64														
$\theta 58$	76	65	76	65												
$\theta 59$	75	66														
$\theta 60$	74	67	74	67	74	67										
$\theta 61$	73	68														
$\theta 62$	72	69	72	69												
$\theta 63$	72	70														
$\theta 64$	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100
$\theta 65$	70	72														
$\theta 66$	69	72	69	72												
$\theta 67$	68	73														
$\theta 68$	67	74	67	74	67	74										
$\theta 69$	66	75														
$\theta 70$	65	76	65	76												
$\theta 71$	64	77														
$\theta 72$	63	77	63	77	63	77	63	77								
$\theta 73$	62	78														
$\theta 74$	62	79	62	79												
$\theta 75$	61	80														
$\theta 76$	60	80	60	80	60	80										
$\theta 77$	59	81														
$\theta 78$	58	82	58	82												
$\theta 79$	57	82														
$\theta 80$	56	83	56	83	56	83	56	83	56	83						
$\theta 81$	55	84														
$\theta 82$	53	84	53	84												
$\theta 83$	52	85														
$\theta 84$	51	86	51	86	51	86										
$\theta 85$	50	86														
$\theta 86$	49	87	49	87												
$\theta 87$	48	88														
$\theta 88$	47	88	47	88	47	88	47	88								
$\theta 89$	46	89														
$\theta 90$	45	89	45	89												

Continued on next page.

Continued from preceding page.

STEP	$\begin{gathered} 1 / 128 \\ (\%) \\ \hline \end{gathered}$		$\begin{aligned} & 1 / 64 \\ & (\%) \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 32 \\ & (\%) \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 16 \\ & (\%) \\ & \hline \end{aligned}$		$\begin{aligned} & 1 / 8 \\ & (\%) \end{aligned}$		Quarter$(\%)$		Half (\%)		Full (\%)	
	1ch	2ch														
$\theta 91$	44	90														
$\theta 92$	43	90	43	90	43	90										
$\theta 93$	42	91														
$\theta 94$	41	91	41	91												
$\theta 95$	39	92														
$\theta 96$	38	92	38	92	38	92	38	92	38	92	38	92				
$\theta 97$	37	93														
$\theta 98$	36	93	36	93												
$\theta 99$	35	94														
$\theta 100$	34	94	34	94	34	94										
$\theta 101$	33	95														
$\theta 102$	31	95	31	95												
$\theta 103$	30	95														
$\theta 104$	29	96	29	96	29	96	29	96								
$\theta 105$	28	96														
$\theta 106$	27	96	27	96												
$\theta 107$	25	97														
$\theta 108$	24	97	24	97	24	97										
$\theta 109$	23	97														
$\theta 110$	22	98	22	98												
$\theta 111$	21	98														
$\theta 112$	20	98	20	98	20	98	20	98	20	98						
$\theta 113$	18	98														
$\theta 114$	17	99	17	99												
$\theta 115$	16	99														
$\theta 116$	15	99	15	99	15	99										
$\theta 117$	13	99														
$\theta 118$	12	99	12	99												
$\theta 119$	11	99														
$\theta 120$	10	100	10	100	10	100	10	100								
$\theta 121$	9	100														
$\theta 122$	7	100	7	100												
$\theta 123$	6	100														
$\theta 124$	5	100	5	100	5	100										
$\theta 125$	4	100														
$\theta 126$	2	100	2	100												
$\theta 127$	1	100														
$\theta 128$	0	100	0	100	0	100	0	100	0	100	0	100	0	100		

(14) Current wave example in each micro step resolution.

Full Step (CW)

Half Step (CW)

Quarter Step (CW)

1/8 Step (CW)

1/16 Step Mode (CW)

1/32 Step Mode (CW)

1/64 Step Mode (CW)

1/128 Step Mode (CW)

(15) Current control operation
(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Figure 16. Constant current control timing chart
Each of current modes operates with the follow sequence.

- The IC enters CHARGE mode at a rising edge of the chopping oscillation. (A period of CHARGE mode (Blanking Time) is forcibly present in approximately $1 \mu \mathrm{~s}$, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
- In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.

If an ICOIL < IREF state exists during the charge period:
The IC operates in CHARGE mode until ICOIL \geq IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately $1 \mu \mathrm{~s}$ of the period.
If no ICOIL < IREF state exists during the charge period:
The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.
The above operation is repeated. Normally, in the sine wave increasing direction the IC operates in SLOW (+ FAST) DECAY mode, and in the sine wave decreasing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+ FAST) DECAY mode.
(16) Output transistor operation mode

Charge increases current.
\qquad
ν

Switch from Charge to
Slow Decay

Current regeneration by Slow Decay

Switch from Slow Decay to Fast Decay

Current regeneration by Fast Decay

Switch from Fast Decay to Charge

Figure 17. Output transistor operation sequence
This IC controls constant current by performing chopping to output transistor.
As shown above, by repeating the process from 1 to 6 , setting current is maintained.
Chopping consists of 3 modes: Charge/ Slow decay/ Fast decay. In this IC, for switching mode (No.2, 4, 6), there are "off period" in upper and lower transistor to prevent crossover current between the transistors. This off period is set to be constant ($\approx 0.375 \mu \mathrm{~s}$) which is controlled by the internal logic. The diagrams show parasitic diode generated due to structure of MOS transistor. When the transistor is off, output current is regenerated through this parasitic diode.

Output Transistor Operation Function

OUTA \rightarrow OUTB (CHARGE)

Output Tr	CHARGE	SLOW	FAST
U1	ON	OFF	OFF
U2	OFF	OFF	ON
L1	OFF	ON	ON
L2	ON	ON	OFF

OUTB \rightarrow OUTA (CHARGE)

Output Tr	CHARGE	SLOW	FAST
U1	OFF	OFF	ON
U2	ON	OFF	OFF
L1	ON	ON	OFF
L2	OFF	ON	ON

(LV8729V)
VM=24V
$\mathrm{VREF}=0.45 \mathrm{~V}$
$R F=0.22 \Omega$
CHOP $=180 \mathrm{pF}$

Figure 18.Constant current control waveform

Figure 19. Sine wave increasing direction

Figure 20. Sine wave decreasing direction

Figure 21. Constant current control waveform (Stationary state)

Motor current switches to Fast Decay mode when triangle wave (CHOP) switches from Discharge to Charge.
Approximately after $1 \mu \mathrm{~s}$, the motor current switches to Charge mode. When the current reaches to the setting current, it is switched to Slow Decay mode which continues over the Discharge period of triangle wave.
(17) Blanking period

If, when exercising PWM constant-current chopping control over the motor current, the mode is switched from decay to charge, the recovery current of the parasitic diode may flow to the current sensing resistance, causing noise to be carried on the current sensing resistance pin, and this may result in erroneous detection. To prevent this erroneous detection, a blanking period is provided to prevent the noise occurring during mode switching from being received. During this period, the mode is not switched from charge to decay even if noise is carried on the current sensing resistance pin.
It is approximately $1 \mu \mathrm{~s}$ in the blanking time for this IC.

Figure 22.Blanking time waveform
(18) Micro step mode switching operation

When Micro step mode is switched while the motor is rotating, each drive mode operates with the following sequence.

If you switch Microstepping mode while the motor is driving, the mode setting will be reflected from the next STEP and the motor advances to the position shown in the following.

1. Microstepping (1/128-, $1 / 64-, 1 / 32-, 1 / 16-, 1 / 8-$, Quarter-.Half-step)

$$
\rightarrow \text { Microstepping (1/128-, 1/64-, 1/32-,1/16-,1/8-,Quarter-.Half-step) }
$$

When a microstepping switches to the next microstepping, the excitation position is switched to the next corresponding step angle of the next microstepping mode.
e.g.) When the rotation direction is forward at $1 / 8$-step, and if you switch to $1 / 128-$ step ($\theta 16-\theta 47$), the step angle is set to 048 at the next step.
When the rotation direction is forward at $1 / 128$ step. If you switch to $1 / 8$-step ($\theta 48$), the step angle is set to $\theta 49$ at the next step.
2. Microstepping (1/128-, 1/64-, 1/32-, 1/16-,1/8-,Quarter-.Half-step) \rightarrow Full-step

When a microstepping switches to the full-step, the excitation position is switched to full-step angle of the present quadrant. Caution is required when switching from $\theta 64$ or higher step angle of microstepping position to full-step.
e.g.) When the rotation direction is forward at $1 / 16$ step $(\theta 0-\theta 124)$ and if you switch to full-step, the step angle is set to $\theta 64$ ' at the next step.

When the rotation direction is forward at $1 / 16$ step ($\theta 128$) and if you switch to full-step, the step angle is set to - $\theta 64$ ' at the next step.
3. Full-step \rightarrow Micro step (1/128-, 1/64-, $1 / 32-, 1 / 16-, 1 / 8-, Q u a r t e r-$. Half-step)

When full step switches to microstepping, the excitation position is switched to the next corresponding step angle.
e.g.) When the rotation direction is forward at Full step ($\theta 64^{\prime}$) and if you switch to Quarter-step, the step angle is set to $\theta 96$ at the next step.
(Please refer to the step angle on $\mathrm{p} .13-15$ for the description on " θ *".)

Micro step mode switching operation

- Micro step \rightarrow Micro step

VM=24V, VDD=5V
VREF=1.1V , RNF=0.22
$P S=$ High , $O E=$ High , RST $=$ High , $f S T E P=400 \mathrm{~Hz}$

Figure. 23 Micro step(1/8step) \rightarrow Micro step(quarter step) MD2=High , MD3=Low

- Micro step \rightarrow Full step , Full step \rightarrow Micro step VM=24V , VDD=5V
VREF=1.1V , RNF=0.22
PS=High , OE=High , RST=High , fSTEP=200Hz

Figure. 25 Micro step(quarter step) \rightarrow Full step MD1=Low, MD3=Low

Figure24. Micro step(quarter step) \rightarrow Micro step(1/8step) MD2=High , MD3=Low

Figure26. Full step \rightarrow Micro step (quarter step) MD1=Low , MD3=Low

Output short-circuit protection function

(1) Output short-circuit detection operation

(2) Output short-circuit protection detect current (Reference value)

Short protector operates when abnormal current flows into the output transistor.
$\mathrm{Ta}=25^{\circ} \mathrm{C}$ (typ)

Upper-side Transistor	4.46 A
Lower-side Transistor	4.04 A

*RF=GND

Figure 27. Detect Current vs Temperature
(3) Timer latch period

Built-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected for $2 \mu \mathrm{~s}$, short-circuit detection circuit state the operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. $256 \mu \mathrm{~s}$). If the output remains in the short-circuit state, turn OFF the output, fix the output to the wait mode, and turn ON the EMO output. When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting ST = "L".

Figure 28 . short-circuit protection function timing chart

Figure 29. Timer latch period waveform
(4) Unusual condition warning output pins (EMO)

The LV8729V is provided with the EMO pin which notifies the CPU of an unusual condition if the protection circuit operates by detecting an unusual condition of the IC. This pin is of the open-drain output type and when an unusual condition is detected, the EMO output is placed in the ON (EMO = Low) state.

Furthermore, the EMO pin is placed in the ON state when one of the following conditions occurs.

1. Shorting-to-power, shorting-to-ground, or shorting-to-load occurs at the output pin and the output short-circuit protection circuit is activated.
2. The IC junction temperature rises and the thermal protection circuit is activated.

Thermal shutdown function

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds $180^{\circ} \mathrm{C}$ and the abnormal state warning output is turned on. As the temperature falls by hysteresis, the output turned on again (automatic restoration).
The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax $=150^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{TSD}=180^{\circ} \mathrm{C} \text { (typ) } \\
& \Delta \mathrm{TSD}=40^{\circ} \mathrm{C} \text { (typ) }
\end{aligned}
$$

Application Circuit Example

The above sample application circuit is set to the following conditions:

- Output enable function fixed to the output state ($\mathrm{OE}=$ " H ")
- Reset function fixed to the output state (RST = "H")
- Chopping frequency : 55.5 kHz (Cosc1 = 180pF)

The set current value is as follows :
IOUT $=($ Current setting reference voltage / 5) / 0.22Ω

Allowable power dissipation

- The pad on the backside of the IC functions as heatsink by soldering with the board. Since the heat-sink characteristics vary depends on board type, wiring and soldering, please perform evaluation with your board for confirmation.

Specified circuit board : $90 \mathrm{~mm} \times 90 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy 2-layer board

Substrate Specifications (Substrate recommended for operation of LV8729V)
Size $\quad: 90 \mathrm{~mm} \times 90 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ (two-layer substrate [2SOP])
Material : Glass epoxy
Copper wiring density : $L 1=85 \% / L 2=90 \%$

L1: Copper wiring pattern diagram

L2 : Copper wiring pattern diagram

Cautions

1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 90% or more of the Exposed Die-Pad is wet.
2) For the set design, employ the derating design with sufficient margin.

Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.
Accordingly, the design must ensure these stresses to be as low or small as possible.
The guideline for ordinary derating is shown below :
(1)Maximum value 80% or less for the voltage rating
(2)Maximum value 80% or less for the current rating
(3)Maximum value 80% or less for the temperature rating
3) After the set design, be sure to verify the design with the actual product.

Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc.
Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC.

Evaluation board

LV8729V (90mm x 90mm x 1.6 mm , glass epoxy 2-layer board, with backside mounting)

Bill of Materials for LV8729V Evaluation Board

Designator	Qty	Description	Value	Tol	Footprint	Manufacturer	Manufacturer Part Number	Substitution Allowed	Lead Free
C1	1	VM Bypass capacitor	$\begin{aligned} & 10 \mu \mathrm{~F} \\ & 50 \mathrm{~V} \end{aligned}$	$\pm 20 \%$		SUN Electronic Industries	50ME10HC	yes	yes
C2	1	VREG2 stabilization Capacitor	$\begin{aligned} & 0.1 \mu \mathrm{~F} \\ & 100 \mathrm{~V} \end{aligned}$	$\pm 10 \%$		murata	GRM188R72A104KA35D	yes	yes
C3	1	VREG1 stabilization Capacitor	$\begin{aligned} & 0.1 \mu \mathrm{~F} \\ & 100 \mathrm{~V} \end{aligned}$	$\pm 10 \%$		murata	GRM188R72A104KA35D	yes	yes
C4	1	Capacitor to set chopping frequency	$\begin{gathered} 180 \mathrm{pF} \\ 50 \mathrm{~V} \end{gathered}$	$\pm 5 \%$		murata	GRM1882C1H181JA01	yes	yes
C5	1	Capacitor to set switching holding current	$\begin{aligned} & 1500 \mathrm{pF} \\ & 50 \mathrm{~V} \end{aligned}$	$\pm 5 \%$		KOA	GRM1882C1H152J	yes	yes
R1	1	Channel 1 Output current detective Resistor	$\begin{gathered} 0.22 \Omega \\ 1 \mathrm{~W} \end{gathered}$	$\pm 5 \%$		ROHM	MCR100JZHJLR22	yes	yes
R2	1	Channel 2 Output current detective Resistor	$\begin{gathered} 0.22 \Omega \\ 1 \mathrm{~W} \end{gathered}$	$\pm 5 \%$		ROHM	MCR100JZHJLR22	yes	yes
R3	1	Pull-up Resistor for terminal EMO	$\begin{aligned} & 47 \mathrm{k} \Omega \\ & 1 / 10 \mathrm{~W} \end{aligned}$	$\pm 5 \%$		KOA	RK73B1JT473J	yes	yes
R5	1	Pull-up Resistor for terminal MO	$\begin{aligned} & 47 \mathrm{k} \Omega \\ & 1 / 10 \mathrm{~W} \end{aligned}$	$\pm 5 \%$		KOA	RK73B1JT473J	yes	yes
R7	1	VREF stabilization Capacitor	$\begin{aligned} & 0.1 \mu \mathrm{~F} \\ & 100 \mathrm{~V} \end{aligned}$	$\pm 10 \%$		murata	GRM188R72A104KA35D	yes	yes
IC1	1	Motor Driver			$\begin{gathered} \text { SSOP44K } \\ (275 \mathrm{mil}) \end{gathered}$	SANYO semiconductors	LV8729V	No	yes
SW1-SW8	8	Switch				MIYAMA	MS-621-A01	yes	yes
TP1-TP20	20	Test points				MAC8	ST-1-3	yes	yes

Evaluation board circuit

Evaluation Board Manual

[Supply Voltage]
VM (9 to 32V): Power Supply for LSI
VREF (0 to 3V): Const. Current Control for Reference Voltage VDD (2 to 5V): Logic "High" voltage for toggle switch
[Toggle Switch State] Upper Side: High (VDD) Middle: Open, enable to external logic input Lower Side: Low (GND)
[Operation Guide]

1. Initial Condition Setting: Set "Open" the toggle switch STEP, and "Open or Low" the other switches
2. Motor Connection: Connect the Motors between OUT1A and OUT1B, between OUT2A and OUT2B.
3. Power Supply: Supply DC voltage to VM, VREF and VDD.
4. Ready for Operation from Standby State: Turn "High" the following toggle switches : ST, OE, and RST.

Channel 1 and 2 are into Full-Step excitement initial position (100\%, -100\%).
5. Motor Operation: Input the clock signal into the terminal STEP.
6. Other Setting (See Application Note for detail)
i. MD1, MD2, MD3 : Micro step resolution.
ii. FR: Motor rotation direction (CW / CCW) setting.
iii. RST : Initial Mode.
iv. OE: Output Enable.
[Setting for External Component Value]

1. Constant Current (100\%)
```
At VREF=1.5V
lout =VREF [V]/5 / RF [ohm]
    =1.5 [V]/ 5 / 0.22 [ohm]
    =1.36 [A]
```

2. Chopping Frequency

$$
\begin{aligned}
\mathrm{Fcp} & =1 /\left(\operatorname{Cosc} 1 / 10 \times 10^{-6}\right)(\mathrm{Hz}) \\
& =1 /\left(180[\mathrm{pF}] / 10 \times 10^{-6}\right)(\mathrm{Hz}) \\
& =55.5[\mathrm{kHz}]
\end{aligned}
$$

Waveform of LV8729V evaluation board.

-Figure 30. Full Step
$\mathrm{VM}=24 \mathrm{~V}$, $\mathrm{VREF}=1.5 \mathrm{~V}$, VDD $=5 \mathrm{~V}$
ST=H, OE=H, RST=H
FR=L
MD1=L, MD2=L, MD3=L
STEP $=300 \mathrm{~Hz}$ (Duty 50\%)

-Figure 32. 1/16 Step
$\mathrm{VM}=24 \mathrm{~V}$, VREF $=1.5 \mathrm{~V}$, VDD $=5 \mathrm{~V}$
ST=H, OE=H, RST=H
FR=L
MD1=L, MD2=L, MD3=H
STEP $=300 \mathrm{~Hz}$ (Duty 50\%)

-Figure 31. Half Step
$\mathrm{VM}=24 \mathrm{~V}, \mathrm{VREF}=1.5 \mathrm{~V}, \mathrm{VDD}=5 \mathrm{~V}$
ST=H,OE=H, RST=H
FR=L
MD1=H , MD2=L , MD3=L
STEP $=300 \mathrm{~Hz}$ (Duty 50\%)

-Figure 33. 1/128 Step
$\mathrm{VM}=24 \mathrm{~V}$, VREF=1.5V , VDD $=5 \mathrm{~V}$
$S T=H, O E=H, R S T=H$
FR=L
MD1=H, MD2=H, MD3=H
STEP $=1500 \mathrm{~Hz}$ (Duty 50\%)

Warning：

－Power supply connection terminal【VM，VM1，VM2】
$\checkmark \quad$ Make sure to short－circuit VM，VM1 and VM2．For controller supply voltage，the internal regulator voltage of VREG1（typ 5V）is used．
$\checkmark \quad$ Make sure that supply voltage does not exceed the absolute MAX ratings under no circumstance． Noncompliance can be the cause of IC destruction and degradation．
$\checkmark \quad$ Caution is required for supply voltage because this IC performs switching．
\checkmark The bypass capacitor of the power supply should be close to the IC as much as possible to stabilize voltage．Also if you intend to use high current or back EMF is high，please augment enough capacitance．

－GND terminal【GND，PGND，Exposed Die－Pad】

$\checkmark \quad$ Since GND is the reference of the IC internal operation，make sure to connect to stable and the lowest possible potential．Since high current flows into PGND，connect it to one－point GND．
$\checkmark \quad$ The exposed die－pad is connected to the board frame of the IC．Therefore，do not connect it other than GND．Independent layout is preferable．If such layout is not feasible，please connect it to signal GND．Or if the area of GND and PGND is larger，you may connect the exposed die pad to the GND．
（The independent connection of exposed die pad to PGND is not recommended．）

－Internal power supply regulator terminal【VREG1】

$\checkmark \quad$ VREG1 is the power supply for logic（typ 5V）．
\checkmark When VM supply is powered and ST is＂H＂，VREG1 operates．
$\checkmark \quad$ Please connect capacitor for stabilize VREG1．The recommendation value is $0.1 \mu \mathrm{~F}$ ．
\checkmark Since the voltage of VREG1 fluctuates，do not use it as reference voltage that requires accuracy．
－Input terminal
\checkmark The logic input pin incorporates pull－down resistor（100k Ω ）．
$\checkmark \quad$ When you set input pin to low voltage，please short it to GND because the input pin is vulnerable to noise．
$\checkmark \quad$ The input is TTL level（ $\mathrm{H}: 2 \mathrm{~V}$ or higher， $\mathrm{L}: 0.8 \mathrm{~V}$ or lower）．
$\checkmark \quad$ VREF pin is high impedance．

－OUT terminal【OUT1A，OUT1B，OUT2A，OUT2B】

$\checkmark \quad$ During chopping operation，the output voltage becomes equivalent to VM voltage，which can be the cause of noise．Caution is required for the pattern layout of output pin．
$\checkmark \quad$ The layout should be low impedance because driving current of motor flows into the output pin．
\checkmark Output voltage may boost due to back EMF．Make sure that the voltage does not exceed the absolute MAX ratings under no circumstance．Noncompliance can be the cause of IC destruction and degradation．

－Current sense resistor connection terminal【RF1，RF2】

\checkmark To perform constant current control，please connect resistor to RF pin．
$\checkmark \quad$ To perform saturation drive（without constant current control），please connect RF pin to GND．
$\checkmark \quad$ If RF pin is open，then short protector circuit operates．Therefore，please connect it to resistor or GND．
$\checkmark \quad$ The motor current flows into RF－GND line．Therefore，please connect it to common GND line and low impedance line．
－NC terminal
$\checkmark \quad$ NC pin is not connected to the IC．
$\checkmark \quad$ If VM line and output line are wide enough in your layout，please use NC．

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2011. Specifications and information herein are subject to change without notice.

